
Technology
understanding
MODULE 2

This presentation is published under Creative Commons (CC

BY-NC-ND 4.0).

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.da

Credit - You must provide appropriate credit, provide a link to the

license, and indicate if any changes have been made. You may

do so in any reasonable manner, but not in any way that

indicates that the licensor approves you or your use.

Noncommercial - Do not use the material for commercial

purposes.

No diversions - If you remix, rework, or build upon the material,

you may not distribute the modified material.

No Additional Restrictions - You may not add legal terms or
technological measures that legally restrict others from doing
what the license allows.

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.da

Agenda ~4t
● 09.00 - 11.00 Workshop

● 11.30 - 12.00 Tour of EUC Syd

● 12.00 - 12.45 Lunch

● 12.45 - 14.15 Workshop

● 14.15 - 14.30 Coffee and refreshments

● 14.30 - 14.50 Follow up, take-home messages, feedback

● 14.50 - 15.00 Goodby and farewell

Similarities and differences between the platforms

The Microcontroller

The Microcontroller

● An entire computer in an integrated circuit
● 8bit, 16bit, 32bit?
● Various devices to communicate with the outside world

○ Communication (i2c, art, usb, radio, etc.)
○ A / D converter
○ audio circuitry
○ Touch circuits
○ Display circuit

The Microcontroller

● Clock
● Digital Ports
● Analog Ports (A/D)
● Timers
● PWM
● Communikation
● Storage space

Clock

● The sinus rhythm of the microcontroller

● Controls how fast operations are
performed

● Timer Interrupts
● Pulse Width Modulation
● Communication

Digital Port

● 2 Levels – HIGH/LOW or 1/0
○ Depending on the Microcontroller’s supply voltage

● Set as INPUT or OUTPUT
○ A limited current can flow from or to the port

● Internal Pull-up resistors

Analog Ports

● Samples analog values via
the built-in A / D Converter

○ Blackboard example

○ Number of bits

○ Sample rate

● Can often act as digital I / O
ports as well

voltage

time

A/D - D/A Conversion

● A/D (Analog til Digital)- Only the analog ports
○ In programming languages, typically called analogRead(), or something similar

○ Reads an analog voltage from a sensor and converts it to a digital value

○ The value depends the number of bits on the converter - typically 10 bits: 0 - 1023

A/D - D/A Conversion

● D/A - Output of analog values
○ The vast majority of microcontrollers can only emulate this

via a digital signal
○ PWM (Pulse Width Modulation) - Blackboard example
○ Most often only a few selected digital ports
○ In programming languages, typically called analogWrite(), or

something similar
○ Typically converts an 8-bit value (0 - 255) to a digital PWM

signal that switches between 0 and 1, with interval lengths
depending on the desired analog voltage value

Debugging

Debugging
● Probably the biggest challenge as it is very nonspecific

● The error can be in many places

● Often requires routine knowing where to look
○ Is it in the code?

○ Is it in the circuit?

○ Is it in the physical set-up?

● At the same time, this is where you often stop (it can take a long time)
○ But here, too, you often learn the most if you manage to solve the problem

Experience
● What is your experience with debugging, while working with:

○ programming?
○ technology / robots?

● - and experiments in:
○ nature and science?
○ physics?
○ chemistry?

● Other subjects, where you are in contact with debugging
○ Mathematics?
○ Language (Dansk, English, Deutch)?
○ Craft work, Cooking, Visual Arts etc.?

Debugging
- LED (Excellent for showing code flow)
- Multimeter (Good for DC voltage and current and

continuity test)
- Requires a little practice to get comfortable with it

- Oscilloscope (A class for itself. Can do anything, but its
expensive too)

- Can in most cases do far too much and it takes a lot of
time to learn how to use it

- Display (micro:bit)
- The USB-connection to the PC

- E.g. via data logging software or a serial monitor

Find the errors #1

Find the errors #2

Find the errors #3

Find the errors #4

Find the errors #5

Methods for Debugging

Debugging in
MakeCode

● Can be used to step
through the code - one step
at a time - and see how the
variables change

● Activated under settings
-> about

● Works only with the
simulator!

Multimeter options
Continuity Test Voltage Measurement Current measurement

How to measure
on a circuit -
Continuity / Diode

● Measures electrical
connection

● You can also measure it
directly at the circuit, if it is
not connection to a voltage
supply

How to measure
on a circuit -
Voltage

● Measured in parallel with
components

● The circuit must, of course, be
connected to a voltage supply

● Remember to set it to the correct
voltage range

How to measure
on a circuit -
Current

● Measured in the circuit
○ You have to lift components

● Separate connection on multimeter -
see previous slide.

● Remember to set to the correct
current range - often between 2mA
and 200mA

How to check
resistance values

● Set the multimeter in the 𝛀 range to
the value that is within the range the
resistance should be.

● Ex. If you expect the resistance to be
at 5kOhm then put the multimeter in
the range of 20k.

● Remember that the resistor must be
removed from the circuit when it is
being measured - otherwise you may
be measuring other components as
well.

Debugging in pairs (30 min)
● You each make conscious mistakes in a setup, that you also know how to

build a working model of
○ code, breadboard or both

● You briefly describe to each other what it was intended to do
○ What should the code do?
○ What should the circuit do?
○ If it is a circuit, then make a circuit diagram showing the circuit

● The you debug each others circuits
○ Try to find all the mistakes you can and write them down on paper so you can evaluate later
○ Try if necessary, to reconstruct the circuit diagram from what is built on the breadboard

● You may change / make new mistakes several times

Measuring Exercises
● Build the following circuit and check and record the values for current, voltage

and resistance

● Draws on whiteboard / smartboard

Use of the micro:bit
for data logging

Data logging software
Link to software for Mac and Windows:
https://teknologihuset.dk/serial-link-til-microbit/

Program demo ...

https://teknologihuset.dk/serial-link-til-microbit/

Light-sensor

micro:bit program
Analog reading of
the light-sensors
value

Write a value to the
computers serial port,
through the
USB-connection

Insert delays, in order not to
read and write the value,
hundreds of times a second

Evaluation
Is the assignment too easy/hard?

Would your pupils be able to use the diagram to build the circuit?

Is the explanation of the theory understandable?

Temperature - MCP9700

Temperature sensor
Conversion from Analog to Digital

When using the external temperature sensor, we must do the math behind
the conversion from a binary value to a decimal that gives the temperature.

The two formulas do this.
Line 1) is the conversion from binary to a voltage in [mV] (millivolts).
Line 2) is the conversion from voltage to temperature.

When an analog voltage from e.g. a temperature sensor must be converted
to a digital (binary) value, an A / D converter is used. This could, as with a
microbit, be a 10-bit converter. This means that it will give a binary value
between 0 and 1023 for a voltage between 0V and 3.2V on pin A0
(microbit). The "ADC" in line 1 is the binary value from our A / D converter
in the microbit. In order to convert the binary value to a voltage, we must
first find out how many volts there are per stage, of which (3.2V / 1024).
Then we multiply with ADC (number of steps we have). Hereby we get the
voltage in [V] and then we multiply by 1000 to get it in [mV]

In line 2, we need to convert from a voltage to a temperature. This formula
comes directly from the temperature sensor datasheet. When Vin is
inserted into [mV] you get the temperature in Celcius.

Temperature sensor

Function for rounding
to the nearest integer

Line 1

Line 2

Was there anything which left you
wondering?

Use the power booster

Evaluation
Is the assignment too easy/hard?

Would your pupils be able to use the diagram to build the circuit?

Is the explanation of the theory understandable?

Motor control

Diagram

Code

NeoPixels

Code

