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Agenda ~4t
● 09.00 - 11.00 Workshop

● 11.30 - 12.00 Tour of EUC Syd

● 12.00 - 12.45 Lunch

● 12.45 - 14.15 Workshop

● 14.15 - 14.30 Coffee and refreshments

● 14.30 - 14.50 Follow up, take-home messages, feedback

● 14.50 - 15.00 Goodby and farewell



Similarities and differences between the platforms



The Microcontroller



The Microcontroller

● An entire computer in an integrated circuit
● 8bit, 16bit, 32bit?
● Various devices to communicate with the outside world

○ Communication (i2c, art, usb, radio, etc.)
○ A / D converter
○ audio circuitry
○ Touch circuits
○ Display circuit



The Microcontroller

● Clock
● Digital Ports
● Analog Ports (A/D)
● Timers
● PWM
● Communikation
● Storage space



Clock

● The sinus rhythm of the microcontroller

● Controls how fast operations are 
performed

● Timer Interrupts
● Pulse Width Modulation
● Communication



Digital Port

● 2 Levels – HIGH/LOW or 1/0
○ Depending on the Microcontroller’s supply voltage

● Set as INPUT or OUTPUT
○ A limited current can flow from or to the port

● Internal Pull-up resistors



Analog Ports

● Samples analog values   via 
the built-in A / D Converter

○ Blackboard example

○ Number of bits

○ Sample rate

● Can often act as digital I / O 
ports as well

voltage

time



A/D - D/A Conversion   

● A/D (Analog til Digital)- Only the analog ports
○ In programming languages, typically called analogRead(), or something similar

○ Reads an analog voltage from a sensor and converts it to a digital value

○ The value depends the number of bits on the converter - typically 10 bits: 0 - 1023



A/D - D/A Conversion   

● D/A - Output of analog  values
○ The vast majority of microcontrollers can only emulate this 

via a digital signal
○ PWM (Pulse Width Modulation) - Blackboard example
○ Most often only a few selected digital ports
○ In programming languages, typically called analogWrite(), or 

something similar
○ Typically converts an 8-bit value (0 - 255) to a digital PWM 

signal that switches between 0 and 1, with interval lengths 
depending on the desired analog voltage value



Debugging



Debugging
● Probably the biggest challenge as it is very nonspecific

● The error can be in many places

● Often requires routine knowing where to look
○ Is it in the code?

○ Is it in the circuit?

○ Is it in the physical set-up?

● At the same time, this is where you often stop (it can take a long time)
○ But here, too, you often learn the most if you manage to solve the problem



Experience
● What is your experience with debugging, while working with:

○ programming?
○ technology / robots?

●  - and experiments in:
○ nature and science?
○ physics?
○ chemistry?

● Other subjects, where you are in contact with debugging
○ Mathematics?
○ Language (Dansk, English, Deutch)?
○ Craft work, Cooking, Visual Arts etc.?



Debugging
- LED (Excellent for showing code flow)
- Multimeter (Good for DC voltage and current and 

continuity test)
- Requires a little practice to get comfortable with it

- Oscilloscope (A class for itself. Can do anything, but its 
expensive too)

- Can in most cases do far too much and it takes a lot of 
time to learn how to use it

- Display (micro:bit)
- The USB-connection to the PC

- E.g. via data logging software or a serial monitor



Find the errors #1



Find the errors #2



Find the errors #3



Find the errors #4



Find the errors #5



Methods for Debugging



Debugging in 
MakeCode

● Can be used to step 
through the code - one step 
at a time - and see how the 
variables change

● Activated under settings 
-> about

● Works only with the 
simulator!



Multimeter options
Continuity Test Voltage Measurement Current measurement



How to measure 
on a circuit - 
Continuity / Diode

● Measures electrical 
connection

● You can also measure it 
directly at the circuit, if it is 
not connection to a voltage 
supply



How to measure 
on a circuit - 
Voltage

● Measured in parallel with 
components

● The circuit must, of course, be 
connected to a voltage supply

● Remember to set it to the correct 
voltage range



How to measure 
on a circuit - 
Current

● Measured in the circuit
○ You have to lift components

● Separate connection on multimeter - 
see previous slide.

● Remember to set to the correct 
current range - often between 2mA 
and 200mA



How to check 
resistance values

● Set the multimeter in the 𝛀 range to 
the value that is within the range the 
resistance should be.

● Ex. If you expect the resistance to be 
at 5kOhm then put the multimeter in 
the range of 20k.

● Remember that the resistor must be 
removed from the circuit when it is 
being measured - otherwise you may 
be measuring other components as 
well.



Debugging in pairs (30 min)
● You each make conscious mistakes in a setup, that you also know how to 

build a working model of
○ code, breadboard or both

● You briefly describe to each other what it was intended to do
○ What should the code do?
○ What should the circuit do?
○ If it is a circuit, then make a circuit diagram showing the circuit

● The you debug each others circuits
○ Try to find all the mistakes you can and write them down on paper so you can evaluate later
○ Try if necessary, to reconstruct the circuit diagram from what is built on the breadboard

● You may change / make new mistakes several times



Measuring Exercises
● Build the following circuit and check and record the values   for current, voltage 

and resistance

● Draws on whiteboard / smartboard



Use of the micro:bit 
for data logging



Data logging software
Link to software for Mac and Windows: 
https://teknologihuset.dk/serial-link-til-microbit/

Program demo ...

https://teknologihuset.dk/serial-link-til-microbit/


Light-sensor



micro:bit program
Analog reading of 
the light-sensors 
value

Write a value to the 
computers serial port, 
through the 
USB-connection

Insert delays, in order not to 
read and write the value, 
hundreds of times a second



Evaluation
Is the assignment too easy/hard?

Would your pupils be able to use the diagram to build the circuit?

Is the explanation of the theory understandable?



Temperature - MCP9700



Temperature sensor
Conversion from Analog to Digital

When using the external temperature sensor, we must do the math behind 
the conversion from a binary value to a decimal that gives the temperature.

The two formulas do this. 
Line 1) is the conversion from binary to a voltage in [mV] (millivolts).
Line 2) is the conversion from voltage to temperature.

When an analog voltage from e.g. a temperature sensor must be converted 
to a digital (binary) value, an A / D converter is used. This could, as with a 
microbit, be a 10-bit converter. This means that it will give a binary value 
between 0 and 1023 for a voltage between 0V and 3.2V on pin A0 
(microbit). The "ADC" in line 1 is the binary value from our A / D converter 
in the microbit. In order to convert the binary value to a voltage, we must 
first find out how many volts there are per stage, of which (3.2V / 1024). 
Then we multiply with ADC (number of steps we have). Hereby we get the 
voltage in [V] and then we multiply by 1000 to get it in [mV]

In line 2, we need to convert from a voltage to a temperature. This formula 
comes directly from the temperature sensor datasheet. When Vin is 
inserted into [mV] you get the temperature in Celcius. 



Temperature sensor

Function for rounding 
to the nearest integer

Line 1

Line 2



Was there anything which left you 
wondering?



Use the power booster



Evaluation
Is the assignment too easy/hard?

Would your pupils be able to use the diagram to build the circuit?

Is the explanation of the theory understandable?



Motor control



Diagram





Code



NeoPixels



Code


